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EXECUTIVE SUMMARY

Quantifying pedestrian volumes and levels of walking activity is critical for many
transportation taskéncluding pedestrian planning and safety analygsause of the limitations
of traditional pedestrian data collection methdgpi¢ally shortdurationmanual counts at a
limited number of locatior)sdirectdemand models of pedestrian volume madletkentifying
relationships with built environment characterisdicae becoming more commadstill, direct
demand models require large quantities of (pedesgtestimation data in order to be
generalizable beyond the few locations where they were developed, and they are often

insensitive to temporal variations in walking activity.

We overcome these limitations using a novel source of pedestrian data: estimated
pedestrian crossing volumes based on fuugton event data recorded in traffic signal controller
logs.Every time a pedestrian push button is pressed in the state of Utah, this activity is recorded,
and UDOT archives these traffic signal pedestrian dotudiata for use in its Automated Traffic
Signal Performance Measures (ATSPM) syst&mrevious UDOT research project developed
methods to estimate pedestrian crossing volumes from pedestrian traffic signal data with
reasonable accuracy. Overafiese catinuous data allow us to study more sites (1,494
signalized intersections throughout Utah) over a much longer time period (one year) than in
previousdirectdemandmodels, including the ability to detect variations across dayeek and

timesof day.

Specifically, we develop direelemand (loginear regression) models that represent
relationships between built environment variables (calculated ahés/4mile network buffers)
and annual average daily and howbimateedestriarvolumes We test maw built
environment variables with empirical and/or theoretical linkages with pedestrian attieity.
alsocontrol spatial autocorrelation through the use of spatial error mahels/alidate our
model results using-fold crossvalidation To our knowlede, this is the first study to relate

traffic signatbased measures of pedestrian activity with built environment characteristics.

All results confirm theorized relationships: There is more pedestrian activity at
intersections with greater population amdpgoyment densities, a larger proportion of



commercial and residential land uses, more connected street nefwibinkgreater intersection
density and percentage folur-way intersections) with greater transit accessre nearby

services and ameniti¢a.g., parks and schoolsind in lowefincome neighborhoods with larger
householdsind fewer vehicledVhile several of these findings confirm evidence from previous
research, othedsmost notably, those related to street network connectivity, specific
desthations, and household incoénare relatively novel empirical findings (most past research
has foundnsignificant or theoretically inconsistent relationships). These findings support the
value of using pedestrian traffic signal data in didmmand models

Notably, we also find relevant daf-week and timeof-day differencedn relationships
between pedestrian volumes and measures of the built envirarifoesixample, schools attract
pedestrian activity, but only on weekdays during daytime hours, arcb#ificient for places of
worship is higher in the weekend modg&imployment density was more closely linked to
pedestrian volumes during weekdays and daytime hours, while population density had a stronger
association during evenings and weekeKdfold crossvalidation results show thetability of
our modelsOur application of models to estimate average daily and hourly pedestrian crossing
volumes at over 62,000 unsignalized intersections in Utah shows the predictive power and

applicability of this reearch.

Results demonstrate the value of these novel pedestrian signal data for planning purposes
and offer support for built environment interventions and land use policies to encourage
walkable communitiedVe also offer recommendations for using thestimates of pedestrian
volumes for various other important transportation planning and engineering tasks, including
pedestrian safety analysis, multimodal legEkervice calculation, health impact assessment,
pedestrian design and infrastructure pripaition, and joint transportation and lanse planning.
Future research could enrich pedestrian traffic signal data with other data sources (trail counts,
weather data, appr GPSbased location data) and apply big data processing and machine
learning méhods to improve our understanding and modeling of relationships between the built

environment and pedestrian volumes.



1.0 INTRODUCTION

1.1 Problem Statement

Quantifying pedestrian volumes and levels of walking activity is critical for many
transportation lanning, engineering, and management tasks. Traffic safety analyses require
estimates of pedestrian exposure to risk, and durations/distances of physically active
transportation are inputs to transportation health impact assessments. Information onisvalking
also useful for analyzing pedestrian level/quality of service, designing pedestrian infrastructure,
and prioritizing pedestrian investments. Furthermore, there is a growing interest in creating
active living and wallkfriendly communities in order to ipmove health, reduce automobile

dependence, and strengthen local economies.

Pedestrian volume data can be collected. Nevertheless, traditional data collection
methods for monitoring pedestrian traffic have limitations: They involve short durations, few
locations, or samples of the population. Manual intersection or street segment counts are time
consuming and often infeasible to conduct over long periods of time. Instruments such as
infrared counters can record continuous data on trail users, but theystyeto deploy across
multiple sites (Ryus et al., 2014). The passive collection of crowdsourced pedestrian data from
mobile devices shows promise, but data may berapresentative and require calibration and
factoring methods (StreetLight InSight, B)1Methods have been developed to adjust short
duration counts to average pedestrian volumes using factors developed from permanent counters
(FHWA, 2016), but they still usually require manual counts and are sensitive to count duration,

seasonality, andattor group selection.

Alternatively, pedestrian volume datanbe modeled. Conventional methods of
modeling roadway volumes are inappropriate for pedestrians, due to data and scale challenges
with including pedestrians in regional traade#mand forecastg models (Singleton et al., 2018).
Instead, planners interested in facHggecific information have turned to using dirdetmand
models (Kuzmyak et al., 2014; Munira and Sener, 2017). Riteictand models predict
pedestrian volumes using observed ¢swamd measures of the surrounding streetscape, land

uses, built environment, and street network. Such models help to understand how environmental



features affect pedestrian volumes and inform transportation andsenulanning and urban
design strateggeto promote walkable communities. Still, dirdeimand models require large
guantities of (pedestrian) estimation data in order to be generalizable beyond the few locations
where they were developed, and they are often insensitive to temporal varmaticaiking

activity.

One potential data source that is relatively ubiquitous in both time and space (available
24/7 at many intersections) is the higgsolution data logs from traffic signal controllers. Every
time a pedestrian push button is pressederstate of Utah, this activity is recorded, and UDOT
archives these traffic signal pedestrian actuation data for use in its Automated Traffic Signal
Performance Measures (ATSPM) system. The use of pedestrian signal data is a potentially rich

source of infomation about levels of pedestrian activity.

Phase | of thisresea@Si ngl et on, Runa & Humagain (2020
Traffic Signal Perf ormance Meas(Wb@&@Reskasch Pedes
report noUT-20.1798 developed methods to translate pedestrian traffic signal data into valuable
information on pedestrian volumes at signalized intersections. Singleton et al. (2020) used one
year of data froni,522 Utah traffic signals and time series clustering to describe patterns of
pedestrian signal activity. Based on these typologies, they randomly selected 90 Utah signals,
used UDOT traffic cameras to record over 10,000 hours of video, and manuallydcalnmbst
175,000 pedestrians crossing at the intersections. Using processed hourly pedestrian actuations
and detections from ATSPM data, they estimated fivelm&ar regression models (segmented
by pedestrian activity, cycle length, and pedestrian neasithg pedestrian signal data to predict
hourly pedestrian crossing volumes. Overall, their estimates were strongly correlated with
observed volumes (0.84) and had a low error3# on average). These results demonstrated the

validity of using pedestain data from traffic signals to estimate levels of pedestrian activity.

Phase Il of this resear@hthe present projegtextends the capability of pedestrian
volume estimation to unsignalized intersections. First, datentand models of pedestrian
volumes ae developed that represent theoreticatipsistent relationships between pedestrian
crossing volumes and measures of the built environment, land use, and neighborhood

sociodemographics at around 1,500 signalized intersectidstaih. Second, these modele


https://drive.google.com/file/d/1AwLf1DZVw0Vj-btPl5eoWe0UOw9TyFwq/view

applied to additional built environment data to predict pedestrian volumes at over 62,000
unsignalized intersections in Utah. We expect that these volume estimates offer improved

opportunities for pedestrian planning and operations as well as fth hedl safety analyses.

1.2 Objectives

The objective of this research is to examine relationships between the built environment
and pedestrian activity through the development of diateatand models of pedestrian volumes,
taking advantage of a novel andatevely ubiquitous (in both time and space) source of
pedestrian data. Specifically, we utilize estimates of pedestrian crossing v@ltakes from
pedestrian pushutton activity data from highesolution traffic signal controller lo§sand
apply loglinear regression models for different time periods to study nearly 1,500 signalized
intersections throughout Utah. Our studyods
collected pedestrian activity data from traffic signals (measured over the coorseysar, and
averaged per day and per hour) for diéemand pedestrian volume modeling. Notably, this
allows us to uncover some theoreticalbnsistent built environment relationships with walking
that many other similar studies have not found, andewtify dayof-week and timef-day

variations in those relationships.

1.3 Scope

This project accomplishetiis research objective through the following major tasks:

1 Reviewing literature on pedestrian volume modeling studies, built environment
predictorsof pedestrian volumes, traffic sigAadsed measures of pedestrian

activity, and direcdemand pedestrian volume modeling.

1 Assembling pedestrian data and estimating pedestrian volumes at signalized
intersections, using results from Phasghis task inwlved processing of one
year of ATSPM traffic signal data frod494signalized intersections and

applying the factoring methods developed during the Phase | project.

pr



1 Assembing and prepang geospatial information about signalized and
unsignalized inteextions in Utah. This information includéocal land use and
built environment characteristics (e.g., residential density, businesses, schools,
parks) as well as measures of the adjacent multimodal transportation system (e.g.,
transit servicegand neighbdood sociodemographic characteristics (e.g.

householdncome)

1 Estimatng models predicting pedestrian volumes at signalized intersections as a
function of land use, built environment, and transportation system characteristics.
Thesedirectdemand modslwere loglinear, controlled spatial autocorrelation,

and were segmented by daftheweek and timef day.

1 Applying estimated models to unsignalized intersectemspredicing pedestrian
volumes at signalized and unsignalized intersectidhis. reslted in pedestrian
volume estimates for over 62,000 unsignalized intersections in Utah. Model

validation utilizeda 10-fold crossvalidationapproach

1 Developng a prototype online tool and graphical interface to visualize estimated
pedestrian volumes atgnalized and unsignalized intersectiofisis visualization
was an ArcGIS online map showing average estimated pedestrian volumes overall

and for differendaysof theweek and timesf day.

1 Providing recommendations for implementation and future work.

1.4 Outline of Report

This report is organized into the following chapters:

1 Chapterl.0provides an introduction to the research, including the problem
statement, objectives, scope, and outline of the report.

1 Chapter2.0describes the research methods, including a literature review of
pedestrian volume modeling studies, built environment predictors of pedestrian
volumes, and traffic signddased measures of pedestrian activity, at ageh
description of direecdlemand volume modeling.



Chapter3.0 contains details about the data collection, including estimated
pedestrian volumes from traffic signal data and built environment data.

Chapterd.0reports on data evaluation aspects, including results ofitbet
demand modslof daily and hourly pedestrian volumes, model validation results,
and model application and visualization.

Chapters.0 offers conclusions, including key findings as well as study limitations
and challenges.

Chapter6.0 provides recommendations for implementation of the findings.



2.0 RESEARCH METHODS

2.1 Overview

This chaptedescribes the research methadsluding a literature review of pedestrian
volume modeling studies, built environment predictors of pedestrian volumes, and traffic signal
based measures of pedestrian activity, as well as a descriptoecidemand viume

modeling

2.2 Literature Review

Two general threads of research have investigated built environment correlates of
pedestrian counts or volumes. One research path is motivated by developing models to predict
pedestrian demand for use in various trangpiort engineering, planning, and safety analysis
tasks. For example, Schneider et al. (2009) describe several applications of such models: to
Aqguantify pedestrian exposure in safety analy
infrastructue, predict pedestrian volumes in the future, analyze crossings warrants, and evaluate
commercial visibility (p. 13). In these studies, built environment characteristics predict
pedestrian counts and are used to estimate pedestrian volumes in areas taliereedaot been
collected. The other strand of research focuses on understanding relationships between urban
design characteristics and walking activity to inform planning and design for walkable, healthy
cities. These studies often focus on measuringrdetailed and complex attributes of urban
form and the built environment, includingthes@a | | ed ADO0 variables (e. g.
land-use diversity, street network design, destination accessibility, and distance to transit)
(Ewing and Cerver®010), urban design qualities of the streetscape (Ewing and Handy, 2009),
and/or street network connectivity elements derived from Space Syntax (Hillier, 2007). A
simplified characterization is that studies of the first kind focus primarily on pedestiianas
and secondarily on built environment measures, while studies of the second kind do the opposite.
Of course, some research straddles the boundaries of the two kinds (Raford and Ragland, 2006,
2004).



Two tables in this secticsummarize the methodsytcomes, and predictors used in
studies modeling pedestrian volumes as a function of built environment measufesu$\en
studies with models of pedestrian counts or volumes, not on literature using indigidual
householebased measures of walkinghaerior. We also exclude studies that group walk and

bicycle traffic together into one nanotorized mode.

2.2.1 Pedestrian Volume Modelingtudies

As shown inTable2-1, most pedestrian volundirectdemand modslutilize manually
collected, shorturation counts of the number of people walking along street segments or
crossing at intersections. Sometimes these counts are as short as 30 or even 10 minutes (or
multiple 5minute counts), but rarely do they exceed 12 hours. These shatibdarare not
surprising, given the cost and effort of conducting manual pedestrian counts at multiple locations
(Ryus et al., 2014). One exception is the one week of automated pedestrian counts conducted in
Blacksburg, Virginia (Hankey et al., 2017; Luad., 2018). For models relating pedestrian
volumes to the built environment, studying many sites is critical for both the power of the
analysis (to detect statisticakygnificant associations) and the generalizability of results (across
varied locatios). Most research builds models using data from between several dozen and
several hundred locations. Three exceptions are the 1,018 signals in Montréal (Miaeda
and Fernandes, 2011), the 1,270 intersections throughout California (Griswold et 3|, a2@
the nearly 10,000 street segments with pedestrian counts in Seoul, South Korea (e.g., Kim et al.,
2019).

Table 2-1: Summary of Pedestrian Volume Modeling Studies

Information Pedestrian Model
Study Geography Locations Time Outcome Method Details Type Fit
Pushkarev and Manhattan, NevO6 0 5 b 1969  Volume, AP Twice, WD, L 0.23
Zupan (1971) York City, New faces Apri instant MD & PM 0.61
York, US Jun
Behnam and Downtown ? street 1975 Volume, 1 hr MC Multiple LL 0.58
Patel (197y  Milwaukee, segments 1973 times 6 min,
Wisconsin, US Sum WD, DT
Hillier et al. Central London02 39 s ?? Volume MC 20-30 times, LL 0.29
(1993) England, UK  segments AM & MD & 0.57
PM
Penn et al. Central London 7 street ?? Volume, 50 MC Tentimes5 CR 0.98
(1998) England, UK  segments min min, AM &
MD & PM



Qinand lvan Rural 32 crossings 1999

(2001) Connecticut, U$ May,
Jun,
Oct,
Nov
Desyllas et al. Central London 231 street 1999
(2003) England, UK segments  Aug,
2000
Mar,
2001
Jul
Raford and Oakland, 42 ??
Ragland (2004 California, US intersections
Liu and San Francisco, 63 2002
Griswold California, US intersections May,
(2009) Jun,
Aug,
Sep
Miranda Montréal, 519 2003
Moreno et al. Quebec, CA  signalized  Spii
(2011) intersections Sum
Raford and Boston, 82 locations 2004
Ragland (2006 Massachusetts, Aug
us
Pulugurtha anc Charlotte, Nortl 176 2005
Repaka (2013, Carolina, US  signalized
2008) intersections
Rodriguez et Bogota, Distrito 338 street 2005
al. (2009) Capital, CO segments  Juri
Aug
Ewing etal. New York City, 588 block 2006
(2016), Ewing New York, US faces Sum

and Clemente

(2013)
Arnold etal.  San Diego 80 locations 2007
(2010) County, Juli
California, US Aug,
2008
Hajrasouliha Buffalo, New 302 street 2007
and Yin (2015) York, US segments 2010
Hankey et al. Minneapolis, 259 2007
(2012) Minnesota, US street/path 2010
segments  Sep
Hankey and  Minneapolis, 471 2007
Lindsey (2016) Minnesota, US street/trail 2014

segments  Sep

Tabeshian and Calgary, 34 2007
Kattan (2014) Alberta, CA intersections 2012
Schneider et al Alameda 50 2008
(2009) County, intersections Apri
California, US Jun

Crossing MC
volume

Volume, 1 hr MC

Volume, 1 MC
year
(extrapolated)
Crossing MC
volume

Volume MC
Volume MC
Volume, 12 hr MC
V(_)Iume, 10 MC

min

Volume MC

Volume, 2 hr MC
(adjusted)
Volume MC

Volume, 12 hrMC
(extrapolated)

Volume, 1 hr MC
Volume, 2 hr MC

Crossing MC
volume, 1

week
(extrapolated)

10

Twice 9.5 hr, LL
WD & WE,
DT

Multiple 5 LL
min, DT

Multiple 2 hr, ??
WD & WE,
AM & PM
Once 4 hr,
WD, PM

L, SA

Three times 1LL
hr, WD, AM

& MD & PM

24 times5 ??
min, WD &

WE, DT

Once 12 hr, L
DT

Once 10 min,NB
WD, AM

Four times,
WD, DT

Twice 2 hr, LL
WD & WE,

AM or MD

or PM

Twice, WD, L
DT

2 hror12 hr, NB
WD, PM or

DT

Various 2 hr, LL
PM

Three times 2L, P
hr, AM &

MD & PM

Twice 2 hr, L
WD & WE,

AM or MD

or PM

NB, SA

0.81
0.91

0.82

0.77

0.75

0.55

0.79

0.86

0.15
0.86

0.03

??

0.52

??

0.42

0.50

0.53

0.79
0.92

0.89



Miranda Montréal, 1,018 2008 Crossing MC Once 8 hr, LL 0.58
Moreno and Quebec, CA  signalized 2009 volume WD, AM &
Fernandes intersections MD & PM
(2011)
Ozbil et al. Atlanta, 157 locatios ?7? Volume MC 20 times (or LL 0.82
(2011) Georgia, US ten times 20 0.84
min), DT &
PM
Kang (2018, Seoul, KR 09, 85eb 2009 Volume MC Sixtimes 14 LL, SA 0.24
2017, 2015), segments  Augi hr, WD & 0.81
Kim et al. Nov WE, DT
(2019, 2017),
Sung et al.
(2013, 2015)
Schneider et al San Francisco, 50 2009 Crossing MC Once2 hr, LL 0.80
(2012) California, US intersections Sep,  volume, 1 WD, AM or
2010 vyear PM
Juli (extrapolated)
Aug
Ameli et al. Downtown Salt 179 block 2012  Volume MC Twice 30 NB ??
(2015) Lake City, faces Sep min, WD,
Utah, US Oct MD & PM
Maxwell Glasgow, 693 street 2014 Volume MC Four times, NB, SA ??
(2016) Scotland, UK segments 2015 WD, DT
Sum
Sanders et al. Seattle, 49 ?? Volume, 1 MC ??,PM P 0.76
(2017) Washington, U¢intersections year
(extrapolated)
Hankey et al. Blacksburg, 72 locations 2015  Volume, 1 dayAC Once 1wk LL 0.71,
(2017), Lu et Virginia, US Apri & 1 hour 0.00
al. (2018) Oct (averaged) 0.78
Park et al. Salt Lake 881 block 2015 Volume MC Four times NB, SA ??
(2019) County, Utah, faces WD, DT
us
Hamidi and Downtown 402block 2016 Volume, 30 MC Once 30 min,NB, SA ??
Moazzeni Dallas, Texas, faces Spr min WD, PM
(2019) us Sum
Le et al. (2020 Dallas, Texas, 196 2016 Volume 1 day MC Once 2 hror NB ?7?
us intersections (extrapolated) 8 hr
Griswold et al. California, US 1,270 20068 Crossing MC Various 186 LL 0.71
(2019) intersections 2016  volume, 1 hr, most two
year times 2 hr,
(extrapolated) AM & PM
Schneider et alMilwaukee, 260 2013 Crossing MC Various, NB ??
(2021) Wisconsin, US intersections 2018  volume, 1 many 13 hr,
year AM & MD &
(extrapolated) PM
This study Utah, US 1,020 2017  Estimated AC Continuous LL, SA
signalized Juni  volume,
intersections 2018 1day &1
Jul hour
(averaged)

Notes: ?? = unknown.

Method:AC = automated counts, AP = aerial photos, MC = manual counts.
Details: WD = weekdg, WE = weekend, AM = morning peak, MD = midday, PM = evening peak, DT = daytime.
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Type: L =linear, LL = loglinear (linear with natural log transformation), CR = linear with et
transformation, P = PoissoNB = negative binomial,
SA = checked ocorrected for spatial autocorrelation.

Fit: R? or pseudeR?.

The data collection methods used to obtain pedestrian volumes for most previous
research led to some limitations in the accuracy, generalizability, and sensitivity of model results.
First, the use of shortluration counts to represent average or typical volonse®n when
adjusted for timef day and weather using a smaller number of lowmigeation automated
count® adds measurement error to the dependent variable. This potentially affectkithand
significance of estimated associations. Second, the short time periods typicallydstoitiesd
weekdays during daytime or morning/midday/evening peak Boiimsts the ability of models
to consider temporal variations in relationships betweebulieenvironment and pedestrian
volumes. There may be interesting and petielgvant variations by timef day, dayof week
(weekdays vs. weekends), and season. Third, the number of locationscstusiiedly less than
1,000 and sometimes less thand@@n limit both the generalizability of findings as well as the

statistical power to detect significant associations.

2.2.2 Built EnvironmentPredictoran Pedestrian Volum®odeling Studies

In pedestrian volume models, some built environment measurebafskeR®-2) are
consistently related to walking in expected directions, while results for other variables are more
equivocal. More often than not, studies find positive associations with residential and
employment density. Walking is alstosely linked to public transit:ocations closer to transit
stops/stations and with more transit stops nearby tend to see greater pedestrian volumes.
Diversity measures like langse mix and entropy are sometimes positively related to pedestrian
volumes but studies also find insignificant or even negative relationships. More studies find null
or unexpectedly negative results than positive results for traditional street network design
variables like intersection density and percentagewfway intersectns. Studies of street
network configurations tend to find positive associations with space syntax measures like
integration. Studies of urban design and streetscape qualities tend to find positive associations
with imageability (the quality of a place thaakes it distinct, recognizable and memorable) and

transparency (the degree to which people can see or perceive human activity beyond the edge of
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a street; Park et al., 2019). A few studies have found that pedestrian volumes are significantly
explained ly socioeconomic and environmental variables like household size, household

incomes, parks, and slope.

Table 2-2: Summary of Built Environment Predictors of PedestrianVolumes

Variable Dir.2  Studies

Density
Floor area ratio or + (Ameli et al., 2015; Ewing et al., 2016; Ewing and Clemente, 2013; Hamic
building density and Moazzeni, 2019; Maxwell, 2016; Ozbil et al., 2011; Park et al., 2019;

et al., 2013)
ns /(Amelietal, 2015; Kim et al., 2017; Park et al., 2019; Sung et al., 2013)

Population density, + (Ameli et al., 2015; Arnold et al., 2010; Behnam and Patel, 1977; Ewing €
household density, or 2016; Ewing and Clemente, 2013; Griswold et al., 2019; Hankey and Linc
residential space 2016; Hankey et gl2017; Kim et al., 2019; Liu and Griswold, 2009; Lu et ¢
density 2018; MirandaMoreno et al., 2011; Mirandsioreno and Fernandes, 2011;

Ozbil et al., 2011; Pulugurtha and Repaka, 2013, 2008; Raford and Ragle
2004; Sanders et al., 2017; Schneider et al., 22082, 2021; Tabeshian and
Kattan, 2014)

n s /(Hajrasouliha and Yin, 2015; Hankey et al., 2012; Kang, 2017, 2015; Ma»
2016; Qin and Ivan, 2001; Park et al., 2019; Pulugurtha and Repaka, 201
2008; Rodriguez et al., 2009)

Employment density, + (Arnold et al., 2010; Behnam and Patel, 1977; Griswold et al., 2019;
employment accessr Hajrasouliha and Yin, 2015; Hankey and Lindsey, 2016; Kadtj7 22015;
commercial/office/non Kim et al., 2019; Liu and Griswold, 2009; Mirantiéoreno et al., 2011;
residential space MirandaMoreno and Fernandes, 2011; Ozbil et al., 2011; Park et al., 201
density Pulugurtha and Repaka, 2013; Pushkarev and Zupan, 1971; Raford and

Ragland, 2004; Sanders et aD1Z; Schneider et al., 2009, 2012, 2021; Sut
et al., 2013; Tabeshian and Kattan, 2014)

ns [/ (Hankey etal., 2012; Park et al., 2019; Pulugurtha and Repaka, 20083,
Rodriguez et al., 2009; Sung et al., 2013)

Diversity
Land-use mix, entropy + (Ameli et al., 2015; Ewing et al., 2016; Ewing and Clemente, 2013;
balance, or % retalil Hajrasouliha and Yin, 2015; Hamidi and Moazzeni, 2019; Liu and Griswo
2009; Park et al., 2019; Sungadt, 2013)
ns /(Amelietal, 2015; Arnold et al., 2010; Ewing et al., 2016; Ewing and
Clemente, 2013; Kang, 2018, 2017, 2015; Kim et al., 2019, 2017; Maxwe
2016; Park et al., 2019)
Transit
Distance to nearest 1 (Ameli et al., 2015; Ewing et al., 2016; Ewing and Clemente, 2013; Hamic
rail/bus stop/station and Moazzeni, 2019; Kang, 2017, 2015; Kim et al., 2019, 2017; Maxwell,
2016; MirandaMorerp et al., 2011; Miranddoreno and Fernandes, 2011;
Pushkarev and Zupan, 1971; Raford and Ragland, 2006; Sung et al., 201
2015)
ns/+ (Hankey et al., 2012; Park et al., 20B%ford and Ragland, 2006; Rodrigue:
al., 2009)
Transit stop density + (Hankey and Lindsey, 2016; Hankey et al., 2017; Liu and Griswold, 2009

et al., 2018; Miranddoreno et al., 2011; Mirandsloreno and Fernandes,
2011; Park et al., 2019; Pulugurtha and Repaka, 2013, 2008; Schneider ¢
2009, 2021; Sung et al., 2B1Tabeshian and Kattan, 2014)
ns [/ (Kang, 2017, 2015; Let al., 2020)
Street network design
Intersection density  + (Hajrasouliha and Yin, 2015; Hamidi and Moazzeni, 2019)
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ns /(Amelietal, 2015; Ewing et al., 2016; Ewing and Clemente, 2013; Hanke
and Lindsey, 2016; Hankey et al., 2017; Kang, 2018, 2017, 2015; Ly et a
2018; Maxwell, 2016; Park et al., 2020; Sung et al., 2013)
% 4-way intersections + (MirandaMoreno et al., 2011; Mirandsloreno and Fernandes, 2011; Park
al., 2019)
ns /(Amelietal., 2015; Ewing et al., 2016; Ewing and Clemente, 2013; Maxw
2016; Park et al., 2019; Sung et al., 2013)
Block length + (Ewing et al., 2016; Ewing and Clemente, 2013; Maxwell, 2016; Miranda
Moreno et al., 2011; Mirandsloreno and Fernandes, 2011; Park et al., 20:
Tabeshian and Kattan, 2014)
ns /(Amelietal, 2015; Hamidi and Moazzeni, 2019; Park et al., 2019)
Space syntax + (Hajrasouliha and Yin, 2015; Hillier et al., 1993; Kang, 2018, 2017, 2015;
(integration, reach, Ozbil et al., 2011; Penn et al., 1998; Raford and Ragland, 2006, 2004)
betweenness, etc.)

ns /(Kang, 2017, 2015)
Socioeconomics
Household size + (Ameli et al., 2015; Ewing et al., 2016; Ewing and Clemente, 2013; Park ¢
2019)
ns /(Hamidi and Moazzeni, 2019; Maxwell, 2016)
Mean/median income 1 (Hankey et al., 2017; Lu et al., 2018; Parklet2019; Pulugurtha and Repak
2013)

ns/+ (Hankey et al., 2012; Hankey and Lindsey, 2016; Pulugurtha and Repake
2013, 2008; Rodriguez et al., 2009; Schneider et al., 2021; Tabeshian an
Kattan, 2014)
Environmental
Park density or + (Kang, 2017, 2015)
proximity
ns [/ (Kang, 2017, 2015; Mirand&oreno and Fernandes, 2011; Schneider et al
2021; Sung et al., 2013)
Slope or grade ) (Kang, 2018, 2017, 2015; Kim et al., 2019, 2017; Liu and Griswold, 2009;
Schneider et al., 2012; Sung et al., 2013, 2015)
ns/+ (Griswold et al., 201p
8Associati on wi t hopostidedio hegative i n sobstatistoaly gnfiicant.

2.2.3 Traffic SignalBased Measures of Pedestrian Activity

In this study, we mitigate some of these limitations by utilizing a new source of
pedestrian data: estimated pedestrian crossing volumes at gignatersections, taken from
pedestrian pushutton events recorded in archived higisolution traffic signal controller logs
(Sturdevant et al., 2012). Assuming a traffic signal includes walk indications and pedestrian
detection (usually pushuttons), &least two relevant pedestrian events can be recorded. Event
code 90 (Apedestrian det ect o fbuttonnstagtivated cur s whe
(pressed), which could happen multiple times
regi st e wlkma calldocservice a walk phase is registered, which usually happens just
once per cycle for a particular phase or crossing (upon the first pedestrian detection event). In
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recent years, several studies have investigated the use of pedestriadatayfal different
purposes, including for pedestrian volume estimation (Blanc et al., 2015; Day et al., 2011;
Kothuri et al., 2017; Li and Wu, 2021; Noyce and Bentzen, 2005; Singleton and Runa, 2021).
More generally, higlresolution traffic signal eventath are beginning to be used in a variety of
other research and operational contexts @nadLiu, 2014), including through Automated

Traffic Signal Performance Measures (ATSPM) systems (Day et al., 2016).

To our knowledge, this is the first study to relasdfic signatbased measures of
pedestrian activity with built environment characteristics. Recall the three limitations of the
shortduration manual count pedestrian volume data typically used in prior built environment
directdemand modst measuremermtrror due to factoring, an inability to model temporal
variations, and the small number of locations studied. Since traffic signal data are recorded
continuously (24 hours a day, 365 days a year), they can overcome the second limitation. The
third limitation is constrained only by the number of signalized intersections with such data in an
area. Regarding the first limitation, we replace the measurement error associated with factoring
shortduration counts with the error due to the fact that pedestriantpuigin data may not be a
perfect measure of pedestrian crossing volumes. One person may press-iefouasmultiple
times (although, only one pedestrian call would be registered), or a group of pedestrians may not
press the button at all. Neverthelgasor research looking at a couple days of data at one
intersection in Oregon found correlations of around 0.80 or greater between pedestrian actuations
and crossing volumes (Blanc et al., 2015; Kothuri et al., 2017). Another study looked at two mid
block crossings in Arizona over several days and estimated pedestrian crossing volumes from

pushbutton data with a mean error of around +2 pedestrians per hour (Li and Wu, 2021).

A recent largescale research effort in Utah investigating the feasibility deptian
traffic signal data for pedestrian volume estimation found similar levels of accuracy. Singleton et
al. (2020; Singleton and Runa, 2021) collected traffic signal data as well as video recordings of
pedestrian crossing events at 90 randomly selesitmalized intersections across Utah in 2019.
Almost 175,000 pedestrians were manually counted during more than 10,000 hours of video,
covering different months, weekdays, and hours. The authors then developed sirplearon
(quadratic and piecewismeéar) regression models predicting hourly pedestrian crossing

volumes as a function of constructed measures of pedestrian signal data (pedestrian actuations,
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and unique pedestrian detections (removing those within 15 seconds of another detection)). For
ease of application, the models did not include traffic volumes or neighborhood
socioeconomic/environmental characteristics, although they did account fonean

relationships between pusiutton use and pedestrian volumes (high vs. low pedestriarntyactivi
signal) and different traffic signal operations (phase on pedestrian recall or not, short vs. long
average cycle length; HAWK signal vs. traditional signal). Over more than 22,500 crossing

hours of observations, the correlation between observed and-predected hourly pedestrian
crossing volumes was 0.84; most models had correlations close to 0.90, and the mean error was
+3 pedestrians per hour (Singleton et al., 2020; Singleton and Runa, 2021). Thus, these results
along with other recent researchdBt et al., 2015; Kothuri et al., 2017; Li and Wu, 2021)

suggest that pedestrian signal data can be used to estimate pedestrian crossing volumes with
reasonable accuracy. Based on these prior research findings, we think the tradeoff in the sources
of errorin the dependent variable (factoring shdutration counts vs. adjusting pedestrian push

button data) is reasonable.

2.3 Direct-DemandVolume Modeling

As previously mentioned in Sectiohsl and2.2, directdemand modelg is a frequently
used approach for estimating Romtorized trave(Kuzmyak et al., 2014 including pedestrian
volumes Directdemand modslpredict pedestrian volumes using observed counts and measures
of the surrounding streetscajemd uses, built environment, and street netw8Stch models
help to understand how environmental features affect pedestrian volumes and inform
transportation and landise planning and urban design strategies to promote walkable
communitiesIn the following subsections, we describe details about divectdemand modsl

are estimated and validated.

2.3.1 Log-LinearReqgression

Consistent with many other studies using built environment characteristics to predict
pedestrian volumes (s@able2-1), we employed a lofinear regression model in which our

dependent variable is transformed using the natural log funttigieneral, loginear regression
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is used to predict a dependent variable (which may be skewed or the result of couasidgta

variety of categorical or continuous independent variable predictors. Specifically:

i 1T -
wherel T &t is the logtransformed dependent varialod(in our case, annual average daily
pedest@n (AADP) crossing volume at an intersectiph is an intercepf, is a slope
coefficient associated with an independent variébl@n our case, one of several built
environment characteristics), ands a random error term thist normallydistributed. The

dependent anthdependent variables (e.g., density, household attributes, land use, local

destinations) are introduced @hapter3.0.

We decided against applying a negative binomial (or Poigaama mixture) regression
modeb traditionally used to model count datédecause our pedestrian data are not actually
count data; instead, they are averages of counts. We used the log tratisfdsatause our data
are strictly positive and are positively skelf€igure2-1). An implication of the log
transformed dependent variable is that we can interpret our estimated coefficients (when
exponentiated) as proportional or percentage changes (rather than absolute changes) in

pedestrian ginal activity due to changes to our independent variables.
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Figure 2-1: Histogram of Annual AverageDaily Pedestrian (AADP) CrossingVolume
(Top: AADP; Bottom: Log-Transformed AADPDashedVerticalLine: Mean)

2.3.2 SpatialLag orSpatial Error Model

The pedestrian data in this study may have an issue of spatial autocorrelation, meaning
that the estimated pedestrian activity at one signal is correlated with activity at nearby signals.
Reasons for this might alude walk trips that extend from one block to the next, similar
demographics or urban form characteristics, or a {acgée destination in one block (e .,
regional park, convention centerit heat er ) . Mor anods udedmebsarefost i c
check for spatial autocorrelation. Any spatial pattern in the residuals violates the assumption of

regression models that residuals are independent of each other and randomly distributed. Before
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controlling for the spatodebrésidumlein thissudp&eODat i on,

indicated a strongly positive spatial relationship.

The spatial lag or error model can be used as a robust tool to deal with the spatial
autocorrelation issue in ordinary least squares (OLS) regression. The Laguatigker test is
used to assess whether the autocorrelation is in the dependent variable or in the errors and helps
in the choice of a spatial regression model. The robust Lagrange multiplier test indicated a spatial
error model as the most suitable hwat, and thus, we employed spatial error models that treat
spatial autocorrelation between the residuals of adjacent areas. We ran spatial error models using
errorsarimfunction gpdepp ackage) in R 3.6.1 software. The

model® r e sp>d0b)aihdEatef no spatial autocorrelation.

2.3.3 Model Validation

To test how well our models can predict actual pedestrian volumes, we evaluated the
predictive performance of our models by runninfipkl crossvalidation (Fielding and Bell,
1997; Hair et al., 2006). Using the same data to estimate parameters and to test predictive
accuracy may overestimate model validity. Hold crossvalidation, the data are divided into k
equal partitions. In this study, data were randomly dividedtaridolds: 90% of the data
(training data) used for model fitting and 10% of the data withheld for model validation in each
iteration. The root mean square error (RMSE), mean absolute error (MAE), and mean absolute
percentage error (MAPE) are used as thneasures of the prediction capability of regression
models (Chai and Draxler, 2014; Willmott and Matsuura, 2005). This procedure is repeated for
each of the k partitions, and the RMSE, MAE, and MAPE values are averaged to obtain the

mean value.

2.4 Summary

Our review of pedestrian volume modeling studashd that mostlirectdemand modsl
utilized manuallycollected, shortluration pedestrian counts at only a few dozen to a few
hundred locations. Only one study used one week of automated counts, whiteealstudies
used data from more than 1,000 sites. These practices result in study limitations: measurement

error in the dependent variable, lower statistical power and lack of generalizability, and inability
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to model temporal variations in built envirment relationships with pedestrian volumes. Our
research addresses many of these | imitations
almost 1,500 signalized intersections. Research on traffic digisald measures of pedestrian

activity suggests thdhey are capable of predicting pedestrian volumes with reasonable

accuracy. When conducting dires¢mand pedestrian volume modeling,-lmgar (or negative

binomial) regression and accounting for spatial autocorrelation are best practices. Such models
should also consider various measures of the built environment, including those related to

density, transit service, street network design, demographics, and destinations.
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3.0 DATA COLLECTION

3.1 Overview

This chapter contains details about the data cadlecincluding estimated pedestrian

volumes from traffic signal data and built environment data.

3.2 Estimated Pedestrian Volumes from Traffic Signal Data

The study area includes the six most populous counties in Utah: Salt Lake, Utah, Davis,
Weber, Washingtn, and Cache. Cumul atively, these six
population and contain most of the roughly 2,100 traffic signals in the Bigtee3-1 shows a
map of the traffic signals located within the six study camitn Utah. The Utah Department of
Transportation (UDOT) has helped lead the development and deployment of the ATSPM system
(Day et al., 2016) through which archived traffic signal controller event logs can be accessed. As
of Fall 2018, UDOT was activelyrehiving data from more than 1,900 stadad locallyowned

signals in a central database (Taylor and Mackey, 2018).
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Figure 3-1: Map of Signalized Intersections in the Six Most Populous Counties in Utah
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Our pedestrian volume data are estimates of annual average daily pedestrian (AADP)
crossing volumes at signalized intersections, derived from pedestrian activity events recorded in
high-resolution traffic signal controller event logs. For this study, wainbt one yedér 01 July
2017 through 30 June 20a.&f pedestrian data from all traffic signals in our study area. After
cleaning the data to remove missing observations, we applied the pedestrian volume estimation
methods developed by Singleton et al. (2&@gletonandRuna, 2021) to the pedestrian signal
data. Next, we aggregated (over hours in a day and crossings at an intersection) and averaged
(over days in the year) those estimates to calculate AADP at each signal. We then removed 143
locations with eféctively no pedestrian activity (less than 1 per day); the vast majority of these
were signals with no pedestrian ptslttons, either in dense downtowns (where signals operated
on pedestrian recall) or in isolated locations (such as highwagmfis andndustrial areas).

After this process, we were left with 1,494 signals for our models. AADP ranged from 1 to

nearly 6,700, with a median of about 110 and a mean of about 270. The distribution of AADP
was positively skewed and leptokurtic. Since our dagaagailable continuously throughout the

year, we also calculated AADP for weekdays vs. weekends. In addition, we calculated the annual
average hourly pedestrian (AAHP) crossing volumes for various times of day. As noted in the
literature review, most stue do not collect enough data to analyze tfiday variations, so

we think our ability to model both average daily and average hourly pedestrian volumes is a
relatively unique contribution. Descriptive statistics for the pedestrian vetiependent

variables are shown imable3-1.

Table 3-1: Descriptive Statistics for Dependent Variables

Variable Min Med Max Mean SD
Estimated annual average daily pedestrians (AADP) 1.08 116.13 673722 267.28 519.00
Weekdays (MondayFriday) 1.12 133.15 7547.23 300.66 598.50
Weekends (Saturdagunday) 0.61 77.52 471221 183.82 352.54
Estimated annual average hourly pedestrians (AAHP) 0.04 4.84 280.72 11.14 21.63
00:00 02:59 0.00 0.43 46.86 1.58 3.98
03:00 05:59 0.00 0.49 53.81 1.41 3.65
06:00 08:59 0.01 4.85 269.93 10.19 19.38
09:00'11:59 0.05 5.84 418.02 14.53 30.99
12:00'14:59 0.04 8.31 536.79 19.70  41.19
15:00'17:59 0.09 9.69 487.00 2152 4151
18:00'20:59 0.05 5.46 366.67 14.00 28.76
21.00i 23:59 0.01 2.26 135.23 6.16 12.34
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We have also visualized AADP and AAhiedestriarcrossing volumesroa map. To do
this, we chose to use ArcGIS Online and create an onlinenveelp . EFtimatedPedestrian
Volumes at Signalized Intersections (1,4BdlJtald i s avai l abl e for publ i
https://arcq.is/0S84WHA direct link to the map itself is herettps://arcg.is/1aTT4A

screenshot of the map showing overafiya@ay)estimatedAADP volumes fortraffic signals in

Salt Lake County ishownin Figure3-2.
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Figure 3-2: Estimated Annual Average Daily Pedestrian (AADP)Volumes at Traffic
Signals in Salt Lake County, Utah

3.3 Built Environment Data

Neighborhood built environment variables were measured for two different buffer
widthsd ¥2-mile and ¥miled in a belief that the number of pedestrians may depend on the
neighborhood environment at diféart scales. For example, the influence of road traffic volume
on pedestrian activity magnly besignificant over a short distance while that of street network

connectivity may be more extensive. A quartele and a hatmile were selected as a standard
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walking distance beyond which walk frequency drops off rapidly; they are used in most travel
behavior |iterature (Ewing and Clemente, 2013
Anal ysto tool I n the ArcGIl S -lRedbuffersfytimiiar e, we

and Yamile for every signalized intersection.

For the predictors of pedestri adensy, gnal ac
diversity, design, destination accessibility, and distance to tdaasitvell as socioeconomic
factors.For density variables, we measured population density (number of 1,000 people per
square mile) and employment density (number of 1,000 jobs per square mile). The population
data came from the American Community Survey (ACS) 220137 at the Census blockogip
level, and the employment data (2017) were collected from the Longitudinal Employer
Household Dynamics (LEHD) at the Census block level. Then, the data were assigned to the
buffers based on the relative areas of the Census boundaries (i.e., theppatitéoning
technique). For the landse variables, we compiled partevel landuse maps from the Utah
Automated Geographic Reference Center (AGRC) for the year 2019 and computed the
percentage of residential parcels, percentage of commercial patgelser of schools, number
of places of worship, and total acreage of parks.

For a transit variable, we measured the number of transit stops in each buffer area.
Transit stop location data in 2019 was available at OpenMobilityData (https://transitfe®jis.co
as a form of General Transit Feed Specification (GTFS). Also, two gross measures of street
network design were computed, using intersection location data provided by the Metropolitan
Research Center at the University of Utah. Intersection densitygsumeeof the block size) was
computed as the number of intersections within a buffer divided by the gross area of the buffer in
square miles. The proportion of feway intersections (a measure of street connectivity) was
computed as the number of fewray intersections divided by the total number of intersections

within the buffer area.

Three demographic variables were also inclddaderage household size, median
household income, and average vehicle ownedskop block groups intersecting with the
buffer. We hypothesized that more affluent residents with more vehicles available might walk

less and drive more, while bigger households might walk more (Ewing et al., 2015; Owen et al.,
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2007). Data for demographic measures were gathered from the ACS (g647estimates) and
assigned to the buffer using the spatial apportioning technique described above. Lastly, as a
measure of traffic safety, we included road types for roads near the intersection. Road types were
divided into three categories based on théogaaphic code of road centerline data, provided by
UDOT: highways (interstates, US and state highways, and associated ramps), major roads
(Amajor | ocal roadso such as arterials), and
wanted to include Arual Average Daily Traffic (AADT) volumes in the model, but they were

not available for several signals and most intersections where one would want to apply these

data. Also, preliminary models found AADT to be not significantly associated with pedestrian

volumes.)

Table3-2 shows descriptive statistics for the built environment variables. Within a given
buffer width, all correlations between these variables werédonoderate (< 0.55) except for a
negative correlation between r@sntial and commercial land use8.75). Also, the highest
variance inflation factor (VIF) values in the regression models were lower than 5. Therefore, we

conclude that multicollinearity among independent variables was not an issue.

Table 3-2: Descriptive Statistics for Independent Variables

Yemile Yomile
Variable Mean SD Mean SD
Population density (1,000 persq. mi.) 4.39 2.80 4.44 2.55
Employment density (1,000 per sq. mi.) 5.60 8.10 4.85 6.31

Househall size (average) 3.09 109 3.10 0.98
Household income ($1,000) 59.75 23.21 60.27 22.40
Vehicle ownership 168 051 1.69 0.47
% residential land use 31.02 2272 37.17 21.37
% commercial land use 29.38 20.11 24.74 16.86
Intersection density (per sq. ini. 97.97 49.01 100.32 38.86
% 4-way intersections 28.46 21.88 25.79 16.61
# schools 0.30 0.62 0.92 1.18
# places of worship 052 080 1.79 1.84
# transit stops 481 394 1271 9.93
Park acreage 146 359 554 9.10
3.4 Summary

The outcome data (dependeariables) are pedestrian crossing volumes, estimated from

traffic signal data. To obtain these volumes, we used one y8arS®M data (July 2017
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through June 2018) at 1,494 signalized intersections in the six most populous Utah emanties
applied tke factoring methods developed in the Phase | project (Singleton et al., 2020). We then
calculated the average annual daily and hourly pedestrian (AADP, AAHP) volumes overall and

for weekdays vs. weekends and each tin@a period during the day. The inpldta

(independent variables) are measures of the locations surrounding each signal related to land use,
the built environment, the transportation system, and neighborhood demographics. Data came

from a variety of sources and was measured using gunaiterand haHmile network buffers.
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4.0 DATA EVALUATION

4.1 Overview

This chapter reports on data evaluation aspects, including resultsdofetttlemand
modek of daily and hourly pedestrian volumes, model validation results, and model application

and visalization.

4.2 Results for Annual Average Daily Pedestrians by Day of Week

Table4-1 shows three models for daily pedestrian activity (AADP) for all days,
weekdays, and weekends, respectively. Lambda represents a coefficientjatittiy s

correlated errors (Anselin and Rey, 2010): it has a positive effect and is statistically significant in

all models.
Table 4-1: Model Results Annual Average Daily Pedestrians
n=1,494 signals Day of wveek (AADP)
All days Moni Fri Sai Sun
Variable B SEsig? B SEsig? B SEsig?
(Intercept) 2.747 0.234* 2.897 0.235* 2.275 0.242*
Population density (¥nile)? 0.326 0.059* 0.344 0.059* 0.373 0.061*
Employment density (¥nile)° 0.124 0.028* 0.136 0.028 * 0.070 0.029*
Household size (¥nile)° 0.418 0.102* 0.452 0.103* 0.146 0.106
Household income (¥nile) -0.010 0.002* -0.010 0.002* -0.008 0.002*
Vehicle ownership (¥mile) -0.198 0.072* -0.217 0.073* -0.103 0.075
% residential (mile) 0.006 0.002* 0.006 0.002* 0.006 0.002*
% commercial (¥mile) 0.019 0.002* 0.019 0.002* 0.022 0.002*
Intersection density (¥nile) 0.004 0.001* 0.004 0.001* 0.004 0.001*
% 4-way intersections (Ymile) 0.006 0.002* 0.006 0.002* 0.008 0.002*
# schools (“mile) 0.155 0.039* 0.170 0.039* 0.065 0.041
# places of worship (¥nile) 0.060 0.020* 0.054 0.021* 0.080 0.021*
# transit stops (Ymile) 0.068 0.008 * 0.069 0.008 * 0.066 0.008 *
Park acreage (¥nile)° 0.022 0.007 * 0.023 0.007 * 0.025 0.007 *
Road type (major road dummy) 0.242 0.053* 0.245 0.053* 0.245 0.055*
Model diagnostics Lambda: 0.49 Lambda: 0.49 Lambda: 0.46
AIC: 3772 AIC: 3784 AIC: 3909.7

a* p<.05; ~:p<.1
b log-transformed
¢all Lambdas arp<.001
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Most built envirmment variable® population density, employment density, %
residential parcels, % commercial parcels, intersection densitywéy4ntersections, schools,
places of worship, transit stops, and park acr@agere statistically significant at a p<.05 level
ard positively associated with the estimated average daily volumes of pedestrians. Among
demographic variables, pedestrian volume increased with average household size and decreased
with median household income and average vehicle ownership of householgladar the
intersection. Pedestrian volume increased significantly when the intersection contained major

roads, compared with only highway or local road types.

Notable dayof-week differences were also found. As expected, the number of schools
near thantersection was not significant in the weekend model; so were two other demographic
variables: household size and vehicle ownership. Albeit statistically significant across the three
daily models, a higher coefficient for the employment density variahtefeund on weekdays
while the population density variable had a biggieeeffecton weekends. Also, the coefficient

for places of worship was higher in the weekend model.

4.3 Results for Annual Average Hourly Pedestrians by Time of Day

Table4-2 shows eight models for hourly pedestrian activity (AAHP) for specific times of
day, in 3hour windows from midnight to midnight. Lambda values had a positive effect and

were statistically significant in all models.

29



Table 4-2: Model Results, Annual Average Hourly Pedestrians

n=1,494 signals

Time of day (AAHP)

12ani 3am 3ani 6am 6ani 9am 9ani 12pm
Variable B SE si¢? B SEsig? B SEsi¢? B SEsi¢?
(Intercept) -1.203 0.262* -0.965 0.254 * -0.013 0.246 -0.175 0.230
Population density (¥nile)° 0.499 0.066 * 0.317 0.064 * 0.252 0.062* 0.293 0.058*
Employment density (¥nile)° 0.061 0.031 ~ 0.034 0.031 0.078 0.029* 0.129 0.027*
Household size (¥nile)° 0.092 0.115 0.266 0.111* 0.420 0.107* 0.377 0.100*
Household income (¥nile) -0.016 0.002* -0.013 0.002* -0.008 0.002* -0.009 0.002*
Vehicle ownership (¥mnile) -0.149 0.081 ~ -0.236 0.078* -0.270 0.076* -0.188 0.071*
% residential (Y4mile) -0.002 0.002 -0.003 0.002 0.008 0.002 * 0.004 0.002 ~
% commercial (¥mile) 0.013 0.002 * 0.010 0.002 * 0.013 0.002* 0.019 0.002*
Intersection density (4nile) 0.001 0.001 0.002 0.001 ~ 0.003 0.001* 0.004 0.001*
% 4-way intersections (Ymnile) 0.005 0.002 * 0.002 0.002 0.005 0.002 * 0.007 0.002*
# schools (¥mile) 0.008 0.044 -0.016 0.043 0.244 0.040* 0.115 0.038*
# places of worship (¥nile) 0.052 0.023* 0.040 0.022 ~ 0.049 0.021* 0.069 0.020*
# transit stops (¥nile) 0.047 0.009* 0.046 0.009* 0.060 0.008* 0.074 0.008*
Park acreage (“mile)P 0.017 0.007* 0.016 0.007* 0.020 0.007 * 0.019 0.006*
Road type (major road dummy) 0.203 0.059* 0.258 0.058* 0.258 0.055* 0.230 0.051*
Model diagnostics Lambda:0.47 Lambda: 044 Lambda: 0.3 Lambda: 0.5

AIC: 4135.2 AIC: 4070.8 AIC: 38877 AIC: 3697.0
n=1,494 signals Time of day (AAHP)

12pni 3pm 3pni 6pm 6pni 9pm 9pni 12am
Variable B SE sig? B SEsi¢? B SEsi¢? B SEsi¢f
(Intercept) 0.029 0.231 0.216 0.233 -0.420 0.237 ~ -0.826 0.241*
Population density (¥nile)P 0.33% 0.058* 0.343 0.059* 0.388 0.060* 0.498 0.061*
Employment density (¥nile)° 0.147 0.028* 0.121 0.028* 0.112 0.028* 0.116 0.029*
Household size (¥nile)° 0.426 0.101* 0.444 0.102* 0.327 0.104* 0.257 0.105*
Household income (¥nile) -0.010 0.002 * -0.010 0.002 * -0.010 0.002* -0.013 0.002*
Vehicle ownership (¥mnile) -0.169 0.071* -0.191 0.072* -0.131 0.073 ~ -0.133 0.074 ~
% residential (¥mile) 0.005 0.002* 0.006 0.002 * 0.005 0.002* 0.002 0.002
% commercial (“mile) 0.020 0.002* 0.019 0.002* 0.021 0.002* 0.018 0.002*
Intersection density (¥mile) 0.004 0.001* 0.004 0.001* 0.004 0.001* 0.003 0.001*
% 4-way intersections (¥nile) 0.006 0.002* 0.006 0.002* 0.008 0.002* 0.007 0.002*
# schools (“mile) 0.167 0.039* 0.159 0.039* 0.079 0.039* 0.030 0.040
# places of worship (Ynile) 0.068 0.020* 0.058 0.020* 0.071 0.021* 0.064 0.021*
# transit stops (¥nile) 0.074 0.008* 0.072 0.008* 0.069 0.008 * 0.062 0.008*
Park acreage (ile)P 0.022 0.006 * 0.021 0.007 * 0.028 0.007 * 0.025 0.007 *
Road type (major road dummy) 0.220 0.052* 0.259 0.052* 0.220 0.053* 0.202 0.054 *
Model diagnostics Lambda: 0.48 Lambda: 0.48 Lambda: 0.8 Lambda: 0.8

AIC: 3741.6 AIC: 3764.2 AIC: 3810.5 AIC: 3857.6

a* p<.05; ~:p<.1
® log-transformed
¢all Lambdas arp<.001

Again, most built environmental variables were positively associated with the pedestrian
volumes across the day ap<.05 significance levepopulation density, employment denshy,
commercial parcels, interstion density, % 4vay intersections, places of worship, transit stops,

and park acreagd@verage household size (positivelg)edian household income (negatively)
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and vehicle ownership (negativelygre also statistically significant mosttime-of-daymodels
of pedestrian volumeédigher pedestrian volumes were found for intersections on major roads, as

opposed to just highways or local road types.

Some timeof-day differences were also founthe number of schools near an
intersection was positively sgciated with pedestrian activity, but only during the daytime
(6ani 9pm). Residential land use became statistically-significant during the nighttime (in the
after9pm or befoream models). The slope coefficients of population density were higher
during the nighttime (afte6pm models) while those of employment density were higher during
the daytime (models for 9arBpm). The coefficient for being on a major road (as opposed to a

highway or local road) wastrongerduring peak hours (6arlam and 3piibpm).

4.4 Overall Results

Table4-3 shows the direction of significant effects for all independent variables in the
three AADP and eight AADH models. Results fromththe daily and hourly models confirm
theoretically consistent relatiships between built environment measures and pedestrian
activity, as identified infable2-2 through the literature revieun general, more pedestrian
activity was found in locations with greater density (greater population apldyment density,
higher shares of residential and commercial land uses), more transit access (greater transit stop
density), more connected street networks (greater intersection density, higher shareval/four

intersections), and closer to major dedimas (parks, schools, and places of worship).

Results from the dagf-week and timef-day models also highlighted important
temporal variations in built environment relationships with walking. Schools were significant
and influential only when in sessinon weekdays and during daytime hours, not on weekends or
at night.As expected, mployment density was less influentaid/or not significant on
weekends and at night, while residential density had larger coefficients at night and on

weekends.
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Table 4-3: Model Results Overall

n=1,494 signals Day of week Time of day (AAHP)

(AADP)

Al Mong Sat 12am 3ani 6ani 9ani 12pm 3pni 6pni 9pni

Variable days Fri Sun i3am 6am 9am 12pm i3pm 6pm 9pm 12am
Population density (¥nile)° + + + + + + + + + + +
Employment density (¥ile)? + + + + + + + + + +
Household size (¥nile)° + + + + + + + + +
Household income (¥nile) T T T T T T T T T T T
Vehicle ownership (¥mile) T T T T T T T T T T
% residential (“mile) + + + + + + + +
% commercial (¥mile) + + + + + + + + + + +
Intersection density (¥ile) + + + + + + + + + +
% 4-way intersections (Yile) + + + + + + + + + +
# schools (¥4mile) + + + + + + +
# places of worship (¥nile) + + + + + + + + + + +
# trarsit stops (¥mile) + + + + + + + + + + +
Park acreage (¥nile) + + + + + + + + + + +
Road type (major road dummy)  + + + + + + + + + + +
Notes: + = significant positive association, 1T = signi:

4.5 Model Validation Results

After fitting the models with the full data, we assessed the predictive power of the nine
models using 1fold crossvalidation. Intersections (n=1,494) were randomly split into ten
equaisized groups. The validation data set (10% of the data) was used to validate the model,
which was fitted using the other 90% of the data through a spatial error model. Ak afrése
10-fold crossvalidation, we obtained average RMSE, MAE, and MAPE for each model. From
the crossvalidation results, the average RMSESs ranged fror@3AA D model) to2.176(6-
9ammodel); the average MAEs were betweer0Q.(AAD model) andL.97 (3i 6pm model);
and the average MAPESs ranged from 22.0% (Mahmodel) to534.0% (2 3am model).

These error values are comparable to those from the full model (RMS&8: D@7, MAES:
0.6791 0.793; MAPEs: 21.8534.0%), indicating that our predictive rdels are stable for new
input data. A further exploration of errors show that pedestrian traffic volumes were
underestimated in the areas with highest pedestrian volume such as downtowns and near
university campuses, findings which call for additional erplory variables or nelinear

functions.
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4.6 Model Application and Visualizations

The ultimate objective of developimiyectdemand modslof pedestrian volumes is to
utilize their ability to predict pedestrian volumes in locations where data on peaesimiaot
exist. For this project, the objective was to predict pedestrian volumes for unsignalized
intersections, to supplement the traffic sighated estimates of pedestrian volumes at signalized
intersections. Therefore, we applied the models preseatdier in this chapter to around 62,000
unsignalized intersectionvgith 3 or 4legs(62,336 to be exact) the six major counties of Utah.
These intersection locations were the same as used earlier, provided by the Metropolitan

Research Center at thiniversity of Utah.

The first step was to assemble all of the necessary data aboutitisagsalized
intersections needed to apply the dirgetmand pedestrian volume models. This information
included the same built environment data as was assemblgdriafized intersections, as
described in Sectio®.3 characteristics dand uss (residential and commerciathe built
environmen{population and employment density, schools, parks, places of worttap
transportation systeifintersection density, transit stop density, percentage ofvayr
intersectionsroad typg, and neighborhood demograph{bsusehold size, household income,
and vehicle ownershipYhese measures were assembled from the same datas@DOT,
Utah AGRC, US Census, etc.) and using the same methods (gquaeter halfmile network
buffers).

The next step was to apply the direct demand pedestrian volume models to the data
assembled for the unsignalized intersections. We took theotizl$) three for AADP (all,
weekday, weekend), and nine for AAHP (all, plus tkmear intervals throughout the déyand
applied each of them to all of the 62,38®ignalized intersectiond hus, for each unsignalized
intersection, we obtained an annaaérage prediction of daily and hourly pedestrian volumes

for different dayf theweek and timesf day.

The final step was to assemble our predicted pedestrian volumes and visualize them on a
map. To do this, we chose to use ArcGIS Online and creaiplave webma p. The #APredi
Pedestrian volumes at I ntersections (62k) 1in
https://arcq.is/008bOCA direct link to the map itself is herettps://arcg.is/0GO0Cv

33


https://arcg.is/0O8bOG
https://arcg.is/0GO0Cv

Screenshots of thmap showingverall (any daypredicted AADP volumes for different urban
areas in Utalareshown inFigure4-1. Screeshots of the map showing overall, weekday, and

weekend predicted AADP volumes for one area in Utah are shokigure4-2.

Legend
Predicted Annual Avg. Daily Pedestrian Volume
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(a) Salt Lake County
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(b) Utah County

(c) Weber County (d) Cache County
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